
Week 2: Tuesday
Python Control Flow

Boolean Logic

Operator Description

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

If, Else, and Elif

if condition:
code block

elif condition:
code block

elif condition:
code block

else:
code block

If Statements, cont.

condition = {"a": True, "b": True}
if condition["a"]:

print("a is True")

1

elif not condition["b"]:
print("b is False")

else:
print("neither a nor b is True")

a is True

If Statements, cont.

condition = {"a": True, "b": True}
if condition["a"]:

print("a is True")
if condition["b"]:

print("b is True")
if not condition["b"] and not condition["a"]:

print("neither a nor b is True")

a is True
b is True

Logical Operators

Operator Description

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Important Resources

• The best resource is always the Python Documentation.
• Full explanation of Python Control Flow at the above address.

2

https://docs.python.org/3/tutorial/controlflow.html

Booleans: true/false values

• Booleans are True/False values.
• They are used to make decisions in code.
• They are often the result of a comparison.

Boolean Example

x = 7

my_boolean = x >= 5

print("is x greater or or equal to 5? ", my_boolean)

is x greater or or equal to 5? True

• my_boolean evaluates to True if x is greater than or equal to 5.
• In other words, python stores my_boolean as a True or False value

– not as x >= 5

if Statements

• if statements are used to make decisions in code.
• They are followed by a boolean expression.
• If the boolean expression is True, the code block is executed.
• If the boolean expression is False, the code block is skipped.

if Statement Example

x = 7

my_boolean = x >= 5

if my_boolean:
print("of course x is greater than 5")

else:
print("No, stupid, x is less than 5")

of course x is greater than 5

3

Truthy vs Falsy Values

• The important point is that the value to the right will only be read if the value to the left evaluates to
truthy

• Falsy is any value that evaluates to False

– An empty list [], tuple (), set set(), string "", or dictionary {}
– Any Numeric zero: 0, 0.0, or complex 3j
– Any constant: False (obviously), or None

• Truthy = everything else.

Truthy / Falsy Examples

1 a = []
2 b = 3
3 c = 0
4 d = 2 - 2
5

6 if a:
7 print("a is truthy")
8 else:
9 print("a is falsy")
10

11 if b:
12 print("b is truthy")
13 else:
14 print("b is falsy")
15 print("d equals ", d)
16 print("so d evaluates to: ", bool(d))

a is falsy
b is truthy
d equals 0
so d evaluates to: False

Operators: and

• The and operator returns if both operands are True.
• If the first operand is False, the second operand is not evaluated.

4

Operators: and, example 1

x = True
y = False
z = True

if x and y:
print("This will not print because both x and y are not true")

else:
print("box x and y are not true")

if x and z:
print("But both x and z evaluate to true, so you see me")

elif z and x:
print("This will not print because the first if is true")

else:
print("box x and y are not true")

if x and z:
print("But both x and z evaluate to true, so you see me")

else:
print("You will not see this, because x and z evaluate to true")

box x and y are not true
But both x and z evaluate to true, so you see me
But both x and z evaluate to true, so you see me

Operators: or

• The or operator evaluates to True if either of the operands is True.

x = True
y = False
z = True
a = 1
b = 0

if x or y:
print("This first if will print because x is true")

else:

5

print("box x and y are not true")

if a or b == 0:
print("This will print because b == 0 is true")

else:
print("You will not see this, because b is true")

This first if will print because x is true
This will print because b == 0 is true

Operators: not

• The not operator negates the boolean value of the operand.

x = 10
y = 20
z = 10
a = "Something"
b = True
if not x == y:

print("x is not equal to y")
else:

print("x is equal to y") # this will not print
if type(a) != int:

print("a is not an integer")
else:

print("a is an integer") # this will not print
print(not b)

x is not equal to y
a is not an integer
False

The other not

• != is a comparison operator that means “not equal to”

6

x = 10
y = 20

if x != y:
print("x is not equal to y")

else:
print("x is equal to y") # this will not print

x is not equal to y

Operators: in

• The in operator checks if a value is in a sequence.

– A sequence can be a list, tuple, string, or dictionary.

my_list = [1, 2, 3, 4, 5]
a = 3
b = 6
if a and b in my_list:

print("Both a and b are in my_list")
elif a in my_list:

print("only a is in my_list")
elif b in my_list:

print("only b is in my list")
else:

print("neither a nor b are in my_list")

only a is in my_list

Nested If Statements

• You can nest if statements inside other if statements.

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

if 3 in my_list:
if 3 in my_list[:5]:

if 3 in my_list[:3]:
print("3 is in the first quarter of the list")

7

else:
print("3 is in the first 3 of the list")

else:
print("3 is in the second half of the list")

else:
print("3 is not in the list")

3 is in the first quarter of the list

8

	Boolean Logic
	If, Else, and Elif
	If Statements, cont.
	If Statements, cont.
	Logical Operators
	Important Resources
	Booleans: true/false values
	Boolean Example
	if Statements
	if Statement Example
	Truthy vs Falsy Values
	Truthy / Falsy Examples
	Operators: and
	Operators: and, example 1
	Operators: or
	Operators: not
	The other not
	Operators: in
	Nested If Statements

