
Week 1: Thursday
Data Types and Variables

Terminology

• Data Mining:

– Collection, Aggregation, Visualization of Data

• Artificial Intelligence:

– Programming that causes machines to come to conclusions on their own.

• Machine Learning:

– training a program to make decisions about data by training it on data. (supervised or unsuper-
vised.)

How do we get our data?

• Data Sources (secondary sources: data that was collected for another purpose)

– collected data.
– Third-party databases.

• Operational Databases
• undocumented APIs (Application Programming Interface)

Extract-Transform-Load (ETL)

• Extract: Get the data from the source (copying from operational database).
• Transform: Clean and organize the data.

– Usually summarizing data. (aggregating)

• Load: Put the data into a database.

1

Data Warehouse vs Data Lake

DataWarehouse Data Lake

Structured Data Unstructured Data
Organized Data Data is not organized
Non-operational Data Non-operational Data
Schema-on-write Schema-on-read

Introduction to Python

• High-level programming language
• Interpreted language.

– Interpreted to machine language at runtime (i.e., as they run).
– No need to compile the code (or no build step).
– Dynamically typed language. (types interpreted at run time).

• Scripting language: run line by line, top to bottom.

Introduction to Python, pt. 2

• Dominates data science and machine learning.

– Competitors: R & Julia
– SQL is not a programming language but a query language for databases.

* You need to know SQL to work with databases.

Let’s get started with Colab

• Go to Google Colab
• Sign in with your Google account.
• File -> Open Notebook -> Google Drive -> choose ipynb file.
• (Show process on the screen).
• Notice, you now have a Colab Notebooks folder in My Drive.

Mounting Google Drive to pull files

from google.colab import drive
drive.mount('/content/drive')

2

https://colab.research.google.com/

Navigating the file system

ls # list files
cd # change directory
pwd # print working directory or the folder you are in.

• Do this in Colab

%ls # list files
%cd # change directory
%pwd # print working directory or the folder you are in.

navigating the file system, pt. 2

• When to do this?

%cd drive # change to the drive folder
%cd MyDrive # change to the MyDrive folder
%cd 'Colab Notebooks' # change to the Colab Notebooks folder

with open('./data/somefile.csv', 'r') as f: # open file in the data folder
print(f.read())

• When not to do this?

– when you want to open an .ipynb file

Comments

This is a comment
Comments are not executed
They are for the programmer to read
x = 5 # this is a comment, but x is read
print(x) # this is a comment, but x is printed
print(x), print is commented out here

5

3

Coments, pt. 2

• When to use them?

– to expain what the code is doing.
– help make code readable

• When not to use them?

– when the code is self-explanatory.
– when the comment is too verbose.

• Make variables descriptive, so you don’t need comments.

Variables & Functions = Programming (plus classes, too)

• Variables are containers that hold data.
• Functions are blocks of code that do something.

– They take in something, do something?, and return something.
– They take in arguments and return values.

• We can set a variable as the output of a function.
• This will make sense as we go on.

Variables

• Think if variables as containers that hold data.
• Variables are used to store data values.
• Variables are created when you assign a value to them.
• Variables can be the out

The basic data types in Python:

• Integers: Whole numbers, positive or negative, without decimals.
• Floats: Real numbers, positive or negative, containing one or more decimals.
• Strings: A sequence of characters, enclosed in single or double quotes.
• Booleans: True or False values.

Basic Data Types: Code

4

string = "Hello, World!"
print("numeric:", 3 + 3)
print("string:", "something " + "and another thing")
print("Float:", float(3) + float(3))
print("Integer:", int(3.0) + int(3.0))
print("String:", str(3.0) + str(3.0))

numeric: 6
string: something and another thing
Float: 6.0
Integer: 6
String: 3.03.0

Complex Data Types in Python

Lists:

• A collection of items
• ordered and changeable
• Allows duplicate members.

Lists: Code

A list is written with square brackets.
We can create a list in two ways:
the inferred way
list1 = ["apple", "banana", "cherry"]
and the explicit way, using the list() constructor to make a List.
list2 = list(("apple", "banana", "cherry"))

print("list1: ", list1)
print("list2: ", list2)
print(f"turn into a string: {' / '.join(list1)}")

list1: ['apple', 'banana', 'cherry']
list2: ['apple', 'banana', 'cherry']
turn into a string: apple / banana / cherry

5

Tuples:

• A collection of items
• ordered and unchangeable
• Allows duplicate members.

Tuples: Code

A tuple is written with round brackets.
We can create a tuple in two ways:
the inferred way
tuple1 = ("apple", "banana", "cherry")
and the explicit way, using the tuple() constructor to make a tuple.
tuple2 = tuple(("apple", "banana", "cherry"))

print(f"tuple1: {tuple1}")
print(f"tuple2: {tuple2}")

tuple1: ('apple', 'banana', 'cherry')
tuple2: ('apple', 'banana', 'cherry')

Sets:

• A collection of items,
• unordered and unindexed
• No duplicate members

Sets: Code

A set is written with curly brackets.
We can create a set in two ways:
the inferred way
set1 = {"apple", "banana", "cherry"}
and the explicit way, using the set() constructor to make a set.
set2 = set(("apple", "banana", "cherry"))

print(f"set1: {set1}")
print(f"set2: {set2}")

6

set1: {'cherry', 'apple', 'banana'}
set2: {'cherry', 'apple', 'banana'}

Dictionaries:

• A collection of items
• stored as key:value pairs
• unordered, changeable, and indexed
• No duplicate members
• {key: value, key1: "value", key2: value}
• But these can be anything: {"name": "John", "age": 36, "country": "Norway"}

Dictionaries: Code

A dictionary is written with curly brackets, and they have keys and values.
We can create a dictionary in two ways:
the inferred way
dict1 = {"brand": "Ford", "model": "Mustang", "year": 1964}
and the explicit way.
dict2 = dict(brand="Ford", model="Mustang", year=1964)

print(f"dict1: {dict1}")
print(f"dict2: {dict2['brand']}")

dict1: {'brand': 'Ford', 'model': 'Mustang', 'year': 1964}
dict2: Ford

Data types: Inherent Functions (methods)

What is a method?

• A method is a function that belongs to an object.

7

What is an object/class?

• Everything in Python is an object/class.
• An object is an instance of a class. So a class is a blueprint for creating object.
• An object has properties and methods (functions).
• properties are variables.
• methods are functions.
• so the methods are things we can do with a class/object.

What is an object/class, pt.2?

for demonstration purposes only
import unicodedata

class MyStr:
def __init__(self, string):

self.value = string
self.help = (

"This is a class that takes a string and returns a lowercase version of it."
)

def to_lower(self):
if not self.value:

return ""
new_value = ""
for i in self.value:

new_value += (
unicodedata.normalize("NFKD", i)
.encode("ASCII", "ignore")
.decode("ASCII")
.lower()

)
return new_value

a = MyStr("Hello, World!")
print(f"value of a: {a.value}")
print(f"help: {a.help}")
print(f"lowercase value of a: {a.to_lower()}")

8

value of a: Hello, World!
help: This is a class that takes a string and returns a lowercase version of it.
lowercase value of a: hello, world!

What does this mean for you?

• Everything in Python is an object/class.
• So everything has methods (in theory?)

String methods:

a = "Hello, World!"
print(a.upper())
print(a.lower())
print(a.replace("H", "J"))
print(a.split(","))

HELLO, WORLD!
hello, world!
Jello, World!
['Hello', ' World!']

Int and Float methods:

• don’t really have methods, but there are function for working with them:
• see below. We will discuss.

List methods:

a = ["apple", "banana", "cherry"]
a.append("orange")
a.remove("banana")
print(a)
b = a.pop()
print(f"pop: {b}")
print(f"first index: {a[0]}")
print("last index:", a[-1])
print("between index 1 and 3:", a[0:])

9

a.pop()
print(f"after popping: {a}")

['apple', 'cherry', 'orange']
pop: orange
first index: apple
last index: cherry
between index 1 and 3: ['apple', 'cherry']
after popping: ['apple']

Tuple methods:

a = ("tuple1", "another_tuple", "last_tuple")
print(a[0])
print(a[-1])
print(a[0:])
print(a.count("tuple1"))

tuple1
last_tuple
('tuple1', 'another_tuple', 'last_tuple')
1

Set methods:

a = {"apple", "banana", "cherry"}
a.add("orange")
a.remove("cherry")
a.add("banana")
print(a)

{'orange', 'apple', 'banana'}

Dictionary methods:

10

a = {"brand": "Ford", "model": "Mustang", "year": 1964}
print(a)
print(a.keys())
print(a.values())
print(a.items())
print(a.get("brand"))
print(a["brand"])

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}
dict_keys(['brand', 'model', 'year'])
dict_values(['Ford', 'Mustang', 1964])
dict_items([('brand', 'Ford'), ('model', 'Mustang'), ('year', 1964)])
Ford
Ford

Math Description

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus: remainder of first number divided by second
** Exponentiation: first number to the power of second
// Floor Division: quotient of the division, rounded down

Simple Math

a = 5
b = 10
c = a + b
d = a - b
e = a * b
f = a / b
print(f"c: {c}")
print(f"d: {d}")
print(f"e: {e}")
print(f"f: {f}")

11

c: 15
d: -5
e: 50
f: 0.5

The Weird Ones

a = 5
b = 10
x = 9
y = 21
c = a % b
d = a**b
e = x // a
f = y // a
print(f"c: {c}")
print(f"d: {d}")
print(f"e: {e}")
print(f"f: {f}")

c: 5
d: 9765625
e: 1
f: 4

Data Type Casting

12

	Terminology
	How do we get our data?
	Extract-Transform-Load (ETL)
	Data Warehouse vs Data Lake
	Introduction to Python
	Introduction to Python, pt. 2
	Let's get started with Colab
	Mounting Google Drive to pull files
	Navigating the file system
	navigating the file system, pt. 2
	Comments
	Coments, pt. 2
	Variables & Functions = Programming (plus classes, too)
	Variables
	The basic data types in Python:
	Basic Data Types: Code
	Complex Data Types in Python
	Lists:
	Lists: Code
	Tuples:
	Tuples: Code
	Sets:
	Sets: Code
	Dictionaries:
	Dictionaries: Code
	Data types: Inherent Functions (methods)
	What is a method?
	What is an object/class?
	What is an object/class, pt.2?
	What does this mean for you?
	String methods:
	Int and Float methods:
	List methods:
	Tuple methods:
	Set methods:
	Dictionary methods:
	Simple Math
	The Weird Ones
	Data Type Casting

